Multi-Axis Machining (3x-axis, 4x-axis, 5x-axis)
MW+ delivers high-accuracy multi-axis (3-4-5-axis) CNC machining for complex parts. Fast turnaround. Tight tolerances. Trusted by aerospace, medical, and automotive industries.
Multi-Axis CNC Machining: Precision Components in 3, 4, and 5 Axes
What Is Multi-Axis Machining?
Multi-axis CNC machining is an advanced manufacturing process that allows simultaneous movement of cutting tools along multiple axes—3-axis, 4-axis, and 5-axis—to produce complex, high-precision parts with tight tolerances. By enabling rotational and angular movements in addition to linear X, Y, and Z axes, multi-axis machining can create intricate geometries, undercuts, angled surfaces, and contoured profiles that are difficult or impossible with standard CNC methods.
This process is widely used for aerospace components, automotive parts, medical devices, molds, dies, and precision engineering parts, delivering both efficiency and accuracy in prototyping and production.
Key Features & Advantages
3-Axis Machining – Moves along X, Y, and Z axes; ideal for simple prismatic parts and flat surfaces. Accuracy up to ±0.01 mm.
4-Axis Machining – Adds rotational motion around the X-axis (A-axis), allowing features like slots, pockets, and angled cuts. Suitable for small batch production with cycle times 20–30% faster than sequential setups.
5-Axis Machining – Provides simultaneous movement along X, Y, Z axes plus A and B rotational axes. Enables complex surfaces, free-form contours, multi-sided machining in a single setup. Tolerance as tight as ±0.005 mm, surface finish Ra 0.4 μm achievable.
Complex Geometry Capability – Undercuts, curved surfaces, deep pockets, and compound angles can be machined efficiently.
Material Flexibility – Metals (aluminum, stainless steel, titanium, brass, copper alloys) and high-performance plastics (PEEK, PTFE, POM, ABS).
MW+: Your Multi-Axis Machining Partner
MW+ provides professional multi-axis CNC machining services with strict ISO-certified quality control, advanced 3-axis, 4-axis, and 5-axis machining centers, and full inspection capabilities. We deliver high-precision, repeatable results for prototype, small-batch, and mass-production requirements.
Why Choose MW+
Full multi-axis capabilities with tolerances up to ±0.005 mm
Surface finishes as smooth as Ra 0.4 μm for critical applications
Engineering support for design optimization, toolpath planning, and material selection
Efficient turnaround and consistent quality for both domestic and international clients
Axis CNC Machining | ±0.0005" Tolerances |
We deliver advanced 3, 4, and 5-axis CNC machining services for projects of all complexities. From prototyping to production, we machine components with the high precision and efficiency your industry demands.
Our Capabilities:
3-Axis Milling: Reliable and accurate for standard parts.
4-Axis Machining: Adds rotation for complex features on cylinders and multiple part faces.
5-Axis Simultaneous Machining: For the most intricate geometries, enabling complex contouring and reduced setup times.
Technical Excellence:
We machine a wide range of materials, including aluminum, titanium, stainless steels, and engineering plastics, holding standard tolerances of ±0.0005″ and handling parts up to 50″ x 30″ x 28″.
Certified Quality:
Our commitment to quality is verified by key certifications, ensuring reliability for critical applications:
AS9100 / ISO 9001 (Aerospace & Quality)
ISO 13485 (Medical Devices)
ITAR Registered
NADCAP Accredited Inspection
We are a trusted partner for the aerospace, medical, and automotive industries, combining decades of expertise with state-of-the-art technology.
Contact us to discuss how our multi-axis machining capabilities can bring precision and value to your next project.
Precision Multi-Axis Machining Services: 3 to 5-Axis CNC Solutions
3x-axis
3-axis CNC milling for complex 2.5D geometries. Achieve ±0.01mm tolerances in aluminum, steel, and plastics.
4x-axis
4-axis indexed milling for continuous precision on multiple faces. Machine complex contours and angled features (±0.008mm) without repositioning.
5x-axis
5-axis is simultaneous machining for aerospace-grade components. Achieve ±0.005mm tolerances on complex organic shapes
The Materials we provide for our multi-axis services
Tool Steel (high wear resistance)
D3 is a high carbon, high chromium tool steel known for its excellent wear resistance and ability to maintain a sharp edge. It is commonly used for cutting tools, dies, and industrial applications requiring high durability.
Subtypes:
- D3 (Standard)
- D3 Cold Work Tool Steel
Pre-Hardened Tool Steel
P21 is a pre-hardened tool steel that offers good machinability and wear resistance. It is ideal for making molds and dies, as it doesn’t require extensive heat treatment.
Subtypes:
- P21 (Standard)
- P21+ (Improved)
Hot Work Tool Steel
H11 is a hot work tool steel known for its toughness and thermal fatigue resistance. It is used in applications involving high temperatures, such as die casting and forging.
Subtypes:
- H11 (Standard)
- H11A (Modified for improved toughness)
Polyoxymethylene (Acetal)
POM is a high-performance engineering thermoplastic known for its low friction, high stiffness, and excellent dimensional stability. It’s widely used in precision parts and mechanical components.
Subtypes:
- POM-C (Copolymer)
- POM-H (Homopolymer)
Polyamide (Nylon)
PA is a versatile synthetic polymer known for its high strength, toughness, and excellent chemical and wear resistance, commonly used in textiles, automotive components, and industrial applications.
Subtypes:
- PA(Nylon) Blue
- PA6 (Nylon)+GF15 Black
- PA6 (Nylon)+GF30 Black
- PA66 (Nylon) Beige (Natural)
- PA66 (Nylon) Black
Polypropylene
PP is a lightweight, durable thermoplastic known for its chemical resistance and versatility. It is widely used in packaging, automotive parts, and consumer goods.
Subtypes:
- PP Homopolymer
- PP Copolymer
High-Density Polyethylene
HDPE is a strong and versatile thermoplastic known for its high strength-to-density ratio. It is commonly used in containers, piping, and plastic bottles.
Subtypes:
- HDPE (Standard)
- HDPE (Recycled)
Low-Density Polyethylene
LDPE is a flexible and durable thermoplastic known for its low density and high chemical resistance. It is often used in packaging films and bags.
Subtypes:
- LDPE (Standard)
- LDPE (Recycled)
Polycarbonate
PC is a strong, impact-resistant thermoplastic known for its clarity and heat resistance. It is commonly used in eyewear lenses, safety equipment, and electronic components.
Subtypes:
- PC (Standard)
- PC (Flame Retardant)
High-Impact Polystyrene
HIPS is a tough and impact-resistant thermoplastic known for its ease of processing and good surface finish. It is commonly used in consumer products and packaging.
Subtypes:
- HIPS (Standard)
- HIPS (Recycled)
Polybutylene Terephthalate
PBT is a thermoplastic engineering polymer known for its excellent mechanical properties and chemical resistance. It is often used in automotive and electrical applications.
Subtypes:
- PBT (Standard)
- PBT (Reinforced)
Polyamide-imide
PAI is a high-performance thermoplastic known for its excellent thermal stability and mechanical properties. It is used in high-temperature applications and aerospace components.
Subtypes:
- PAI (Standard)
- PAI (Filled)
High-Speed Steel
M2 is a high-speed steel known for its high hardness, wear resistance, and ability to retain hardness at elevated temperatures. It is commonly used for cutting tools and drills.
Subtypes:
- M2 (Standard)
- M2 (Coated)
High-Speed Steel
HSS is a high-performance tool steel known for its ability to cut at high speeds without losing hardness. It is widely used in manufacturing cutting tools.
Subtypes:
- HSS (Standard)
- HSS (Coated)
Polyether Ether Ketone
PEEK is a high-performance thermoplastic known for its excellent chemical resistance and thermal stability. It is used in specialized applications such as aerospace and medical devices.
Subtypes:
- PEEK (Standard)
- PEEK (Reinforced)
Polymethyl Methacrylate
PMMA is a transparent thermoplastic known for its clarity and UV resistance. It is commonly used as a lightweight alternative to glass in various applications.
Subtypes:
- PMMA (Standard)
- PMMA (Impact Resistant)
Polytetrafluoroethylene (Teflon)
PTFE is a high-performance fluoropolymer known for its non-stick properties and chemical resistance. It is widely used in coatings, seals, and gaskets.
Subtypes:
- PTFE (Standard)
- PTFE (Filled)
Tolerance for Multi axis Machining Services
Limits for nominal size
Metals (ISO 2768- f)
Plastics (ISO 2768- m)
0.5mm* to 3mm
±0.05mm
±0.1mm
Over 3mm to 6mm
±0.05mm
±0.1mm
Over 6mm to 30mm
±0.1mm
±0.2mm
Over 30mm to 120mm
±0.15mm
±0.3mm
Over 120mm to 400mm
±0.2mm
±0.5mm
Over 400mm to 1000mm
±0.4mm
±0.8mm
Over 1000mm to 2000mm
±0.5mm
±1.2mm
| Category | Parameter | Standard Grade | Precision Grade | Validation Method |
|---|---|---|---|---|
| Machine Accuracy | Positional Accuracy | ±0.0015″ (3-axis) | ±0.0003″ (5-axis) | Laser Tracker (ISO 230-2) |
| Volumetric Accuracy | ±0.003″ (per ft³) | ±0.0005″ (per ft³) | Ballbar Testing (ISO 230-4) | |
| Tooling Performance | Tool Deflection | <0.002″ @ 10:1 L:D | <0.0005″ @ 20:1 L:D | Strain Gauge Measurement |
| Tool Change Repeatability | ±0.0004″ | ±0.0001″ | Dial Indicator Test | |
| Workholding | Fixture Repeatability | ±0.002″ | ±0.0005″ | CMM Probing (NIST Traceable) |
| Dynamic Clamping Force | 500 lbf (Hydraulic) | 1500 lbf (Pneumatic) | Load Cell Verification | |
| Surface Quality | Ra Surface Finish | 32 μin (End Mill) | 4 μin (Diamond Tool) | White Light Interferometry |
| Form Error (Freeform) | ±0.003″ | ±0.0005″ | 3D Laser Scanning | |
| Process Capabilities | Minimum Feature Size | 0.010″ (3D Contour) | 0.001″ (Micro-Milling) | SEM/ Optical Microscopy |
| Simultaneous Axis Sync | ±15 arc-sec (4th/5th) | ±3 arc-sec (5+ axis) | Rotary Encoder Feedback | |
| Thermal Stability | Thermal Drift (8hr) | ±0.001″/°C | ±0.0002″/°C | Laser Displacement Sensors |
| Coolant Temp Control | ±2°C (Flood Coolant) | ±0.5°C (Chiller System) | Thermocouple Logging | |
| Material Removal | MRR (Aluminum) | 15 in³/min | 50 in³/min (HSM) | Force Dynamometer |
| Hard Material Capability | HRC 45 (Steel) | HRC 65 (Ceramics) | Tool Wear Analysis (SEM) | |
| Dynamic Performance | Vibration Damping | 0.05 ζ (Structural) | 0.20 ζ (Active Control) | Modal Analysis (FFT) |
| Settling Time (Step Response) | 50 ms | 10 ms | High-Speed Encoder Tracking | |
| Metrology Integration | On-Machine Probing | ±0.0005″ (Touch Probe) | ±0.0001″ (Laser Probe) | Master Artifact Calibration |
| Real-Time Error Comp | 50% Error Reduction | 90% Error Reduction | Closed-Loop Feedback System |